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Incompleteness of the Landauer formula for electronic transport
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‘We show that the Landauer formula for the conductance of a nanoscale system is incomplete because it does
not take into account many-body effects which cannot be treated as contributions to the single-particle trans-
mission probabilities. We show that the physical origin of these effects is related to the viscous nature of the
electron liquid and we develop a perturbative formalism, based on the time-dependent current-density-
functional theory, for calculating the corrections to the resistance in terms of the “Kohn-Sham current distri-
bution” and the exchange-correlation kernel. The difficulties that still remain in calculating the latter are

critically discussed.
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I. INTRODUCTION

The trend toward extreme miniaturization of electronic
devices provides strong motivation for theoretical studies
aimed at characterizing and understanding the electrical
transport properties of quantum-mechanical systems.' Here,
by “quantum system” we mean a molecular structure or clus-
ter of atoms or perhaps a microscopic region defined on the
surface of a semiconductor. Either way, this system is con-
nected to an external circuit which maintains current flow via
electron sources.

In the case of steady-state transport, this complicated non-
equilibrium many-body problem is oftentimes simplified by
conceptually replacing the electron sources with ideal reser-
voirs, whose role is to define a local electron distribution and
a local electrochemical potential at which electrons are in-
jected in or extracted from the system.” The reservoirs are
conceptual constructs which allow us to map the transport
problem onto an ideal stationary scattering one so that the
time derivative of all local physical properties of the system
and the current is zero.°

As a further simplification, one assumes that these reser-
voirs are adiabatically “connected” to leads in which nonin-
teracting electrons are free to propagate before scattering at
the lead-system interface.> The leads are only a convenient
region of space where scattering states can be developed into
an appropriate basis of the Hilbert space. This viewpoint to
electrical conduction is known as Landauer approach.

A schematic of this approach applied to a system con-
nected to several leads is shown in Fig. 1 where the shaded
region represents the system and the white regions are the
leads, numbered 1-N. The contacts between the leads and
the system can be very complicated and should be consid-
ered part of the system. The proper lead, far from the contact,
is a single-electron wave guide, which we can assume to
have constant electrochemical potential w; (i=1,..,N). At
equilibrium all the leads are at the same electrochemical po-
tential w and no current flows in or out of the system. As we
move slightly away from equilibrium, the currents flowing in
the leads will be related to the electrochemical potentials by
the linear relationships
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N
Ii=2Giij, (1)
j=1

where the currents /; are reckoned positive when they flow
out of the system and negative when they flow into the sys-
tem. The coefficients G;; are the linear conductances of the
system. In an ideal steady-state situation (w; and /; indepen-
dent of time) the conservation of charge implies that the sum
of all the currents is zero and therefore (for every terminal )

Z G;=0. ()

Furthermore, the condition that the currents vanish when all
the chemical potentials are equal implies that

I, X,

FIG. 1. Schematic of a quantum system in a multiterminal con-
figuration. The central region is connected to leads of noninteract-
ing electrons, in turn connected adiabatically to reservoirs of
electrons.
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N
E Gij =0. (3)
J=1

It follows that the off-diagonal conductances G;;, with i # j,
are sufficient to completely characterize the linear steady-
state response of the system.

The Landauer formula offers an appealing way to relate
G;; to the quantum-mechanical properties of the system. In
this theory G;; is proportional to the quantum-mechanical
probability that a single electron coming from lead i with
energy E be transmitted into a different lead j at the same
energy. In linear response and at zero temperature, this en-
ergy can be taken to be the Fermi energy E of the system.
We call this coefficient T;(Er) and notice that, in general, it
is a sum of all the partial probabilities of transmission from
one of the momentum states of the incoming electron at en-
ergy Er to one of the momentum states of the outgoing elec-
tron at the same energy (see, e.g., Refs. 1 and 5). Thus, the
Landauer formula reads

2

2e
Gij= -

h Tij(EF)7

(i #)). (4)

It is important to note that the mathematical description of
this approach relies on scattering theory, namely, on the
transmission properties of single electrons in the leads that
scatter at the leads-system interface. Therefore, for this de-
scription to be valid any interaction between electrons can
only be included at a mean-field level. Many-body interac-
tions beyond mean field destroy the concept of single-
particle transmission probability and, in fact, when taken into
account also in the leads, they do not even allow for the
derivation of a closed form for the total current.!”8 All of the
above issues are particularly relevant in nanoscale systems,
where the current densities at the junction can be substan-
tially larger than in the bulk. A large current density implies
a large number of scattering events per unit time and unit
volume, thus making the description of transport phenomena
in terms of noninteracting particle properties questionable.!

It should thus not come as a surprise, and this is what we
set to clearly show in this paper, that the Landauer formula
(4) represents an incomplete description of electrical trans-
port in nanoscale systems. This point is particularly relevant
these days, since there has been a surge of theoretical activi-
ties aimed at calculating the transport properties of these sys-
tems from “first principles.” A popular way to tackle this
problem is to extract the transmission function appearing in
Eq. (1) from the one-electron Green’s function,” which is
calculated from the self-consistent potential of the ground-
state density-functional theory (DFT).! In this manner, one
hopes to include the most important effects of the electron-
electron interaction without losing the simplicity of the
single-particle theory. Indeed, one expects that interactions
control the positioning of the single-particle energy levels of
the system with respect to the Fermi level and for this reason
they have a large impact on the conductance.

However, from a more general theoretical standpoint
things are not so simple. First of all, even if we assume that
the physical approximations underlying the Landauer for-
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mula (1) are a reasonable starting point to describe electrical
transport, the use of ground-state DFT in the present context
is highly questionable, since one effectively uses a ground-
state theory for an intrinsically nonequilibrium problem even
in linear response and in the dc limit.!®

Indeed—and this leads us to the central message of this
paper—it is precisely the nonequilibrium nature of the trans-
port problem which renders Eq. (4) untenable. In a practical
realization of a transport experiment, electrons are in a state
of nonequilibrium and, therefore, their correlations are time
dependent even in the limit of zero frequency. These corre-
lations give rise to scattering processes that cannot be de-
scribed by a mean-field theory and, under certain conditions,
may influence substantially their dynamics.

Therefore, the Landauer formula, which has been derived
within a single-particle framework, cannot be uncritically
transferred to the many-body context, hoping that a proper
inclusion of many-body effects in the single-particle energy
levels will always suffice. In fact, in this paper we show that
there are many-body corrections to the Landauer formula,
which cannot be formulated in terms of single-particle trans-
mission probabilities.

In order to demonstrate this important point of principle
we start from the rigorous formulation of the conductance in
terms of the zero-frequency limit of the exact nonlocal con-
ductivity tensor o'ij(r,r’ ; w) of the interacting many-electron
system (w is the frequency) in the linear-response regime.
We then resort to the time-dependent current-density-
functional theory (TDCDFT) (Refs. 11-13) to show that the
conductivity tensor ¢ satisfies the integral equation

5:= 3v_3'ﬁxc'&v (5)

where &, is the resistivity tensor of a noninteracting system
in the presence of a static potential V (also known as the
Kohn-Sham potential) that reproduces the exact ground-state
density and p,. is a dynamical contribution that will be de-
fined precisely in Sec. IIL.

The linear-response formulation of mesoscopic transport
dates back to works by Fisher and Lee'* and Baranger and
Stone!® in the 1980s and was recently combined with
density-functional theory by several authors.'®~!° Because &,
is the conductivity of a noninteracting system, it is possible
to analyze it microscopically by the method of Fisher and
Lee'* (later generalized by Baranger and Stone'®) and thus
show that this part of the conductivity alone leads to the
Landauer formula (1), with transmission probabilities com-
puted from the Kohn-Sham potential V. This step is still
within the assumptions of the Landauer approach, whereby
the electron sources are replaced by conceptual reservoirs
whose role is to populate the single-particle states according
to different Fermi functions and these states can be devel-
oped in terms of the single-particle states of the leads. How-
ever, this is not the whole story, since there is also the con-
tribution of the second term on the right-hand side of Eq. (5).
In other words, within the Landauer viewpoint to conduc-
tion, even if we knew the exact Kohn-Sham potential, in-
cluding all the self-interaction and nonlocal corrections
which are responsible for the correct alignment of the one-
electron energy levels, we would still be making an error in
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calculating the conductance from the Landauer formula (4).%°

Next, we examine the nature of the correction to the Lan-
dauver formula. We observe that Eq. (5) is algebraically
equivalent to the equation

P=Ds+ Pres (6)

where p=G"! is the exact nonlocal resistivity, p,= &, " is the
Kohn-Sham resistivity, and p,. is the contribution from
many-body exchange and correlation. The resistivity controls
the energy dissipation associated with a steady current distri-
bution and the presence of the xc correction p,, implies that
there are mechanisms of dissipation that are not taken into
account in the Landauer approach of elastically scattering
electrons, with relaxation and dephasing occurring only in
the reservoirs.?! What Eq. (6) tells us is that electron-electron
interactions make up for additional dissipation within the
system, a dissipation that is physically a manifestation of
electronic viscosity. As a matter of fact, the simplest approxi-
mation for p,., which is derived from the Vignale-Kohn
(VK) approximation to TDCDFT,'? is expressed precisely in
terms of the viscosity of a homogeneous electron liquid: this
approximation shows that p,. is a positive kernel, always
giving rise to a positive contribution to dissipation (i.e., an
increase in resistance).

The existence of viscosity contributions to the electrical
resistance was first pointed out in Ref. 22, where these con-
tributions were called dynamical corrections because, as we
have discussed above and will show below, they vanish in a
strictly ground-state formulation of the theory. However, the
relation of such contributions to the Landauer formula had
remained somewhat unclear (see also Ref. 16). The present
work shows conclusively that the Landauer formula (4) is
incomplete and the many-body corrections to it are precisely
the “dynamical corrections” identified in Ref. 22.

The form of Eq. (6) suggests a simple perturbative ap-
proach to the calculation of the resistances R;; (derived from
the conductances G;; and defined more precisely below)
based on the minimal entropy-production principle of linear-
response theory.”® In brief, since the energy dissipation rate
(proportional to the entropy production) computed from the
single-particle (mean-field) theory is stationary with respect
to a small variation of the Kohn-Sham current distribution
j(r) (for given fotal currents in the leads) it follows that the
additional dissipation due to the xc term is simply

Wye=ls- ﬁxc'js (7)
to first order in p,.. From this formula, and from the knowl-
edge of the Kohn-Sham current distribution, we can straight-
forwardly extract the xc contribution to the resistances. The
formula for the xc two-probe resistance of a quantum point
contact or molecular junction which we presented in Ref. 22
will be recovered as a special case of the general perturbative
formulation.

Finally, we consider some quantitative aspects of the
theory. It must be said that a compelling comparison between
theory and experiments is still hampered in most cases by an
imperfect characterization of the contact region. Keeping this
in mind, it is now accepted that the theoretical calculations of
the conductance of molecular junctions, using the Landauer
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approach and ground-state DFT, overestimate the measured
conductance by at least an order of magnitude.'® Part of this
discrepancy can certainly be attributed to errors in determin-
ing the position of the energy levels of the system relative to
the electrochemical potential in the leads—errors which in
turn are intimately connected to self-interaction corrections,
discontinuities in the xc potential as a function of particle
number, and so on.2* Even after correcting for these effects,
however, it seems that the computed conductance remains
larger than the observed one, and it is here that our many-
body corrections can play a decisive role.

Our preliminary estimates of the size of the correction
seem to indicate that the many-body viscous effects contrib-
ute only a small percentage to the total resistance.?? For the
case of two infinite jellium electrodes separated by a vacuum
gap, the use of the viscosity as reported in Ref. 25 has shown
an even smaller effect.” But this does not mean that the
issue is settled.

First of all, it is important to note that these estimates
have been based on an oversimplified description of the cur-
rent density in nanoscale systems by neglecting transverse
variations of both the density and current density.>? For in-
stance, as shown in Ref. 27 transverse density gradients in-
crease the dynamical resistance. Quite generally, the trans-
verse density and current-density gradients and the spatial
variation of the viscosity must all be taken into account when
evaluating the viscous resistance. This is particularly relevant
in nanoscale systems where nonlinear (turbulent) effects
have been recently predicted.?®-3! Therefore, for a given
nanoscale system, these dynamical effects need to be evalu-
ated with the self-consistent microscopic density and current-
density distribution.

Aside from the above issues, there remains another and
more fundamental source of uncertainty, namely, the value of
the electronic viscosity which enters the dissipative kernel
Pxe- In the concluding part of this paper we will argue that
this value is still subject to a large uncertainty and we will
outline the path along which better approximations might be
obtained.

This paper is organized as follows. Section II reviews the
general formulation for the conductance and the resistance of
a nanoscale system in terms of nonlocal conductivity. In Sec.
IIT we present the time-dependent current-density-functional
approach to the calculation of the resistivity and demonstrate
the existence of corrections to the Landauer formula (4). In
Sec. IV we develop the perturbative approach to the calcula-
tion of the many-body corrections to the resistance. In Sec. V
we illustrate the working of the formalism in a simple one-
dimensional model, re-deriving and extending the informal
estimates of Ref. 22. Finally, in Sec. VI we discuss the
present difficulties in performing accurate calculations of the
many-body corrections and outline a path toward more accu-
rate estimates.

II. FORMULATION

Our starting point is the linear-response formula for the
steady current density j in the presence of a steady electric
field E,
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ja(r)=2Jdl"%g(r,r’)Eg(l"), (8)
B

where « and 8 denote cartesian indices and a’alg(r,r’) is the
real part of the conductivity tensor. The integral runs over the
whole volume of the system depicted in Fig. 1 including the
leads. The electric field, however, vanishes deep inside the
leads. The above equation is satisfied for small electric fields
of the form

E(r) == Vr¢(r) ’ (9)

where ¢(r) is an electrostatic potential of arbitrary shape,
except for the constraint of tending to constant values

P(r) — w (10)

deep into the ith lead.

Here, we assume that the electrostatic potential coincides
with the electrochemical potential deep into the leads.’? Be-
cause a steady current also satisfies the continuity equation

V. jr)=0 (11)

and because the current cannot be affected by a uniform shift
of the electric potential in the whole space it follows that the
conductivity tensor satisfies the conditions'

2 OayTapr.x’) =0 (12)
ap
and
> é’af dy;oap(r,r')x;5=0, (13)
af3 Cj

where d, is a short-hand notation for d/ dr,, and d, stands for
a/ 0r X; is the outwardly directed unit vector in lead j and
yjis a short hand notation for the coordinates perpendicular
to X;, which are integrated over the cross section C; of the jth
lead (see Fig. 1 for a schematic).®3

The current /; in the ith lead is given by

Ii= f dy;j(r) -
C;

i

J dyfdr Exiaa-aﬂ(r’r,)&,ﬁqs(r,)-
af

(14)

Following Baranger and Stone'> we make use of Egs. (10)
and (12) and an integration by parts to find the intuitive
result [cf. Eq. (1)]

N
Ii=2Gij/~Ljv (15)
j=1

where
Gij=- f dy, f Ay} 2 xiaTapr 1 )55 (16)
C; C; ap

Note that up to this point we have made no approximation
on the microscopic physical mechanisms that contribute to
the conductance (16) apart from those embodied in the view-
point represented in Fig. 1. Therefore, within this viewpoint,
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FIG. 2. Diagrams for the proper current-current response func-
tion. The solid dots represent (particle) current vertices. The solid
lines represent fully dressed single-particle propagators and the dot-
ted lines Coulomb scattering processes.

the conductance (16) contains, in principle, all many-body
interactions even beyond mean field.

The next step is then to express the conductivity tensor in
terms of a microscopic current-current response function. To
this end we introduce the proper current-current response
function, which yields the electric current response to the
fully screened vector potential in the following manner:

ja(r,w)=—622fdl")?ag(r,r’;w)[Aﬁ(r’)+Ay,ﬁ(r’)],
B

(17)

where A(r) is the external vector potential and Ay(r) is the
vector potential additionally created by the screening
charge.>* The factor ¢?> (e being the absolute value of the
electron charge) is introduced to be consistent with the defi-
nitions used in other publications."'33 The use of the
“proper” current-current response function as opposed to the
“ordinary” one, which describes the response merely to the
external vector potential, is required because we are seeking
the current response to the physical electric field, which in-
cludes contributions from the induced space charge. Then the
conductivity is

ImYa5(r,r';
AN . «Q 4 >
ot = = lim 2 XagEL50) (18)

w—0 (O]

The proper current-current response function is best ex-
pressed in terms of an infinite series diagrams with two cur-
rent vertices, such as the diagrams shown in Fig. 2 where the
solid lines represent fully dressed particle propagators and
dotted lines Coulomb interactions. Notice that this series
does not contain any diagrams that can be divided into two
parts by cutting a single Coulomb interaction line. It is the
exclusion of these diagrams that makes our response func-
tion “proper” as opposed to “full.”3*

A. Mean-field approximation

In the special case of a noninteracting system, or a system
interacting at a mean-field level, only the first term of the
series survives and we get, following the standard rules,?

mer, aj;e)W“’%)

nm n

Tap(r.r’) W(r') o€, - €,),

(19)

where n and m denote exact single-particle eigenstates with
energies €, and wave functions i,(r), f(e,) is the Fermi dis-
tribution at the common chemical potential u (before apply-
ing the bias) and temperature 7, and Wy, (r) is the matrix
element of the @ component of the (particle) current operator
between states m and n:
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ih
ng(r) == Z{'ﬂ;(l‘)ﬁa%l(r) - [aal//:(r)]lpm(r)} (20)

Equation (19) leads upon substitution in Eq. (16) to the stan-
dard Landauer formula (4).'%!5 The calculation is quite
subtle, hinging on the possibility of choosing a complete set
of exact eigenstates in the form of scattering states, i.e.,
states of energy e which describe a single particle “entering”
the system in the transverse channel a of the ith lead and
scattered with probability amplitude 7, 3, into any transverse
channel b of the jth lead.

Within this mathematical assumption, the transmission
coefficient T}; that appears in Eq. (4) is found to be given by

Tij=2 |fia,jb|2- (21)
a,b

We refer to the original papers'*!> for the details of this
derivation. What is important for our purposes is that the
conventional Landauer formula (4) emerges from an ap-
proximation to the exact formula (16)—an approximation in
which only the first term in the infinite series of diagrams for
the proper current-current response function is retained.

The question now arises how to go beyond this simplest
approximation to include electron-electron interaction ef-
fects. In Sec. III we describe an approach based on time-
dependent current-density-functional theory.

III. TIME-DEPENDENT CURRENT-DENSITY
FUNCTIONAL THEORY

As discussed in Sec. I, a popular approach to the inclusion
of many-body effects in nanoscopic transport is to use the
Landauer formula (4), but calculate the transmission prob-
abilities by solving the one-particle scattering problem in a
static effective potential that includes many-body effects.
How is such a potential to be constructed?

The ground-state DFT of Kohn and co-workers? offers a
practical answer. According to this theory it is possible to
find, in principle, an exchange-correlation potential which, in
combination with the Hartree potential and the external po-
tential, produces the correct ground-state density of the
many-body system. Furthermore, this potential (known as
the Kohn-Sham potential) is uniquely determined by the den-
sity. Thus, it is very tempting to make use of the Kohn-Sham
potential to calculate the transmission probabilities and hope
that all many-body effects pertaining to the transport prob-
lem be included. Unfortunately, this approach lacks any rig-
orous theoretical foundation. In practice, it amounts to
“dressing up” the free particle lines in the first diagram of
Fig. 2, while still discarding all the other diagrams. There-
fore, it must be interpreted as nothing more than a single-
particle mean-field approximation even if we knew the exact
ground-state xc functional and as such there is no physical
reason why this should be even approximately correct.

The time-dependent current-density-functional theory of-
fers a more solid basis to attack the problem. Taking for
granted the ordinary DFT description of the ground state, the
TDCDEFT attempts to describe the current response of the
many-body system as the response of a noninteracting refer-
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ence system to an effective time-dependent vector potential.
The noninteracting reference system is usually taken to be
the “Kohn-Sham system,” i.e., the noninteracting system that
is used in ordinary DFT to reproduce the ground-state den-
sity of the many-body system. Thus, in the TDCDFT ap-
proach the current response to a time-periodic vector poten-
tial A(r,)=A(r,w)e ™ +c.c. is written as

ja(r’ w) == 622 f dr,Xs,aB(r’r,;w)
B

X{AR(r w) + Ay p(r', ) + A 4r', @)},
(22)

where x; ,4(r.r";w) is the current response function of the
Kohn-Sham system, Ay is the Hartree vector potential, and
A, is the exchange-correlation vector potential.’” The essen-
tial point is that the exchange-correlation potential is a
unique functional of the current density and in the linear
approximation can be represented as

— Ay (T 0) = f dr' 2 freap(r:r';0)jgr" ), (23)
B

where the “exchange-correlation kernel” fy. ,5(r.r"; ) is
determined by the ground-state density. Later we will also
need the “exchange-correlation electric field,” which is de-
fined as

Exc,a(rv w) = iwac,a(r’ w) . (24)

The above formula (22) should be compared with the exact
linear-response formula (17). Combining Egs. (22), (23), and
(17) we find the well-known relation between ¥, x,, and fi.,
namely,

[y_l]aﬁ(rJJ ’ w) = [Xs];lz%(rar’ > (,()) _fxc,aﬁ(r’r, > (.0) > (25)

where [)?‘l]aﬁ(r,r’ , ) is the matrix inverse of Y,4(r.r’, ),
which is regarded as a matrix with indices a,r and B,r’.

Equation (25) gives us a handle on the inverse of the
conductivity, i.e., the resistivity tensor. To make the connec-
tion, observe that the complex conductivity tensor a(r,r’, )
is given by

Xagr.r':) (26)

5'0(,3(r,r’,w)=—e2 ‘o

whose real part reduces to o(r,r’) in the limit w—0. Ac-
cordingly, the complex resistivity tensor is given by

_ — o __
Pop(r.r' w) =[& 1]a;;(r,r’,w):—?[x Napr.r’ ).

(27)
Then, making use of Eq. (25) we find

~ - iw

paﬁ(r’r,’ (1)) = ps,aﬁ(r’rl ’ (1)) + ;fxc,aﬁ(r’r” (x)) ° (28)
where the “Kohn-Sham resistivity,” p,, has the same relation
to x, as the full interacting resistivity to ). Finally, taking the
real part of both sides and going to the zero-frequency limit
we find
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Pap(r,1") = py 05X, 1) + pye op(r,1"), (29)
where
! H wN !
pxc,aﬁ(r’r ) =- hn});v‘mfxc,aﬁ(rsr ,w). (30)

This is the main result of our paper which we have antici-
pated in Eq. (6). We clearly see that the resistivity of the
Kohn-Sham system—a noninteracting system in which
many-body effects enter only implicitly through the static
exchange-correlation potential—is not the whole story. This
means, in particular, that it is not possible to give an exact
representation of the conductance in terms of single-particle
transmission probabilities. We have demonstrated this point
for the linear-response regime, namely, in the limit of zero
external bias. However, this result must be valid also out of
linear response, even though in this case the extent of the
dynamical corrections, which in linear response are embod-
ied in fy. p, is Ot s0 easily determined.

We now shift our attention to the estimate of the dynami-
cal exchange-correlation contribution p,, which is controlled
entirely and explicitly by many-body effects, i.e., time-
dependent correlations in the effective potential of TDCDFT.
The many-body kernel f,., which appears in Eq. (29), is not
known exactly for any system, but a local approximation to it
is available and has been used in the recent literature with
varying degrees of success.!>?226:27:38 [n a local approxima-
tion the key quantity

~ iw
Exc,a(r’w):_?2fdr’fxc,aﬁ’(r’r’7w)jﬁ’(r”w)» (31)
B

which has the physical significance of “exchange-correlation
electric field” [see Eq. (24)], is taken to be a function of the
local value of j(r) and its first and second spatial derivatives.
The simplest approximation in this class is the so-called
adiabatic local-density approximation (ALDA), which pro-

vides an instantaneous connection between Exc(r) and j(r).
In this approximation, however, f,. is purely real, resulting in
an exchange-correlation electric field that is always 90° out
of phase with the current density. Therefore, such a field
cannot contribute to the dc resistivity, consistent with the fact
that Jmf,. vanishes in this approximation.

So in order to obtain exchange-correlation corrections to
the resistivity we must go beyond the adiabatic approxima-
tion. This can be done with the help of the VK local-density
approximation,'> which calls into play the viscosity of the
electron gas. In this approximation the exchange-correlation
field has a dissipative component which is 180° out of phase,
i.e., opposite to the current. In the zero-frequency limit this
component of the exchange-correlation field has the form!3

Exc,a(r) == 2 J dr,pxc,aﬁ(r’r,)jﬁ(r,)
B
-l aﬁ{ n(r){aﬁ(jﬁ> . &Q(Lcﬂ)

e’n(r) 5 n(r) n(r)

2 (i)
-3V (n(r)>5“ﬁH’ (32)
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where j(r) is the electric current density and 7(r) is the dc
shear viscosity of a homogeneous electron gas of density
n(r).?> Egs. (29), (30), and (32) constitute a complete (albeit
approximate) formulation of the microscopic resistivity ten-
sor within TDCDFT. The Kohn-Sham resistivity itself is ac-
cessible from the ordinary static DFT. p,. is best described
through the effective electric field it produces—an electric
field E,. directed against the current, which therefore does
negative work on the current. In Sec. IV we show how our
expression for E,. can be directly applied to the calculation
of the macroscopic conductance.

IV. PERTURBATIVE CALCULATION
OF THE CONDUCTANCE

Let us return to the system shown in Fig. 1 and assume
that the electrochemical potentials u; are periodically modu-
lated in time with a (very) small angular frequency w. By
“small” we mean a frequency much smaller than any other
internal frequency of the system. The lead currents induced
by the modulation are then also periodic and given by Eq.
(1). Since the reservoirs are the only part of the system on
which we have direct control it is evident that the work done
on the system per unit time is

N
W= (L, (33)
i=1

where the angular brackets denote a time average over a
period of oscillation. This is also the energy that must be
internally dissipated if the system is to remain in the steady
state.

In order to express W in terms of the lead currents we
must invert the linear relation (1) between the lead currents
and the electrochemical potentials. Strictly speaking, this re-
lation is not invertible because a rigid shift of all the electro-
chemical potentials has no effect on the current. But the
problem is easily solved by permanently grounding one of
the reservoirs, say, the one with i=1 so that ;=0 at all
times. Then the linear relation between the remaining N—1
currents I,, ..., Iy and the corresponding electrochemical po-
tentials wu,,...,uy is invertible, and the current in the
grounded lead is simply given by I;=—1,—...—I.

Then, we see that the dissipated power can be represented
as

N
W= >, (ILR;I), (34)

i
i,j=2
where the (N-1) X (N—1) matrix R;; is the inverse of the
matrix G;; stripped of the first row and the first column.®
The macroscopic expression for W in terms of R;; is now
equated to the usual microscopic expression in terms of the
resistivity, resulting in the following equation:

N
2 IiRijIjzfdrf dr'j(r) - p(r,r') - j(r'), (35)
i,j=2

where the integrals run over the volume of the system, in-
cluding the leads, and we have dropped the time average by
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going to the zero-frequency limit. Finally, by making use of
Eq. (29) we arrive at

N
E iRl = f dl'f dr'j(r) - [py(r,r’) + py ] - j(x').

i,j=2
(36)

This equation is formally exact if we know the exact many-
body kernel f,.. Let us compare it with the formula we
would obtain from the conventional single-particle theory,
i.e., from the Landauer formula (4), for the same lead cur-
rents.

As discussed in Sec. II, the “single-particle” theory as-
sumes that all many-body effects can be included in the
Kohn-Sham potential of the ground state. Apart from this,
the system is noninteracting. The current-density distribution
js(r) of this fictitious Kohn-Sham system is in general differ-
ent from the true current-density distribution j(r) of the
many-body system, even though the macroscopic lead cur-
rents, i.e., the fluxes of j and j, into the leads, are imposed to
be the same. Therefore, we write

N
> IiRs,ijIj:Jer dr'j(r) - py(r,x") - j(r'), (37)

i,j=2

where R, ;; are the macroscopic resistances of the Kohn-
Sham system obtained from the standard single-particle
theory. Notice that the dynamical term p,. is absent in the
single-particle theory.

The comparison between Egs. (36) and (37) is compli-
cated, in general, by the difference between j and j,. A
simple comparison becomes possible in the perturbative
limit, i.e., under the assumption that the dynamical many-
body correction embodied in p,. is small. To this end we
observe two facts: (i) The difference between j and j; is of
first order in the xc correction and (ii) the right-hand side of
Eq. (37) is stationary under a small variation of the current
distribution, such as the difference between j and j,. The
physical reason for this is that in any linear system with
external leads (such as the Kohn-Sham system we are con-
sidering here) the power dissipated is stationary with respect
to an infinitesimal variation of the current distribution at con-
stant lead currents. This implies that a first-order variation in
the current distribution (about the steady distribution j, in
this case) produces a second-order variation in the dissipated
power. Taking this into account we see that we can safely
replace j, by j in Eq. (37) and subtracting from Eq. (36) we
arrive at the main result of this section:

N
E IlARthj = f drf dr’jx(r) : ﬁxc(r’r’) : js(r’)’ (38)

ij=2
where
AR;;=R;;— R (39)

is the dynamical correction to the resistance. This equation
expresses the many-body correction to the macroscopic re-
sistance in terms of two things that are approximately known
and/or calculable, namely, the resistivity exchange-
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FIG. 3. A model two-terminal device in which the density
changes only in one dimension. 1 and 2 are the lead regions.

correlation kernel p,., defined by Eq. (32), and the Kohn-
Sham current distribution of the device, j,(r), associated with
the macroscopic lead currents ;. The latter can be calculated,
in principle, from the response of a noninteracting system to
a screened electric field. In practice, one can calculate the
correction to R;; by considering a special situation in which
only /; and /; are different from zero. Then the left-hand side
of Eq. (38) gives us exactly the desired correction to R;;.

V. EXAMPLE

Let us consider a simple model application of the general
formalism. Our system is a potential barrier connected by
two identical homogeneous leads (labeled 1 and 2 in Fig. 3)
to two reservoirs, a “source” and a “drain,” aligned along the
x axis. The system is perfectly homogeneous in the trans-
verse directions y and z. The density changes only in the x
direction. The source (terminal 1) is grounded, so we only
need to determine the two-terminal resistance Ry, or, equiva-
lently, the conductance G22=R§2'. Let I be the current through
the device and j(x)=1I/A the current density, where A is the
transverse cross section of the device.

Notice that in this case there is no question of j(x) being
different from j,(x) since, by continuity, they are both uni-
form and equal to //A. In the absence of electron-electron
interactions the conductance of this system is simply given
by Eq. (4)—the total transmission probability across the po-
tential barrier being the sum of the transmission probabilities
of all the occupied transverse modes. Including the electron-
electron interaction has two effects. The first is fairly trivial,
namely, the effective potential in the ground state is modified
by screening and exchange-correlation effects and the trans-
mission probabilities must be recalculated for this effective
potential. Up to this point the single-particle formula (4) re-
mains in force.

The second effect is the dynamical exchange-correlation
correction—an effect that cannot be forced into the mold of
the static mean-field theory. Making use of Eq. (38) with N
=2 and j(x)=I/A we obtain

1
AR,, = P,f drf dr' py(x,x"), (40)

where p,.(x,x") denotes the xx component of the tensor
Pxc(x,x") and we emphasize the fact that, due to our assump-
tions, it depends only on x and x’. Now observe that, accord-
ing to Eq. (32) the action of p,, on a uniform current density
is specified by
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4 1
dr' py (0, x") == ———d,| n(x)d,— |, 41
f Prcl,x") 3n() [71( ) nx)] (41)
where 7(x) is the shear viscosity of the homogenous electron
gas evaluated at the ground-state density n(x). Substituting
this in Eq. (40) and doing an integration by parts we arrive at

4 [n' ()
AR,, = SezAf dxn(x) T (42)
where n'(x)=4d,n(x). Notice that this has the correct dimen-
sions of resistance because n is a three-dimensional density
and 7 has the dimensions of 7 times a density. Figure 3
shows the electronic density in the leads and in the device.
Clearly the dynamical correction comes entirely from the
nonhomogeneous regions near the edges of the barrier (the
contacts).

Equation (42) was first obtained in Ref. 22 in a more
intuitive manner. The advantage of the present formulation is
that it allows easy extension to more complicated situations.
For example, we can include the dependence of the density
on the transverse coordinates y and z, while neglecting varia-
tions of the transverse components of the current. In this
case, we still have j(r)=const, but now the gradient of the
density has both longitudinal and transverse components. As
a result we get

4P V0P
3w 7

where V| is the x component of the gradient and V, is the
gradient in the y—z plane. This result (for constant viscosity)
was first reported in Ref. 27 following an intuitive procedure,
still based on the calculation of the power dissipated in the
circuit.

1
ARy, = ﬁj dr(r) , (43)

VI. DISCUSSION AND CRITIQUE

In this paper we have shown that the single-particle mean-
field framework of Landauer is inadequate in principle to
describe the transport problem in nanoscale systems. That is
to say a calculation of conductance from Eq. (4) would not
provide the exact current even if one could determine the
transmission probabilities with the utmost precision. Dy-
namical many-body effects enter the picture due to the in-
trinsic nonequilibrium nature of conduction.! These effects
cannot be captured by a static formulation.

The next question is: what is the actual size of these dy-
namical corrections? One of the main results of this paper,
Eq. (38), opens the way to a fully microscopic first-principles
calculation of nanoscopic resistances and conductances (in
the linear regime) within the framework of the local approxi-
mation to time-dependent current-density-functional theory.
In Ref. 22 we tried to address this question for the simple
quasi-one-dimensional model discussed in Sec. V and found
that the viscosity correction to the resistance was only a
small fraction of the total. For the case of two infinite jellium
electrodes separated by a vacuum gap, a more accurate cal-
culation based on the homogeneous electron-gas viscosity
reported in Ref. 25 (see Fig. 4) showed an even smaller
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FIG. 4. Qualitative behavior of the viscosity of a homogeneous
electron gas as a function of frequency. For frequencies smaller than
1/7, with 7 the quasiparticle relaxation time, 7 approaches the dc
limit 9. 779 vs density is shown in inset (a) for 7=300 K. The
calculation is done with the Abrikosov-Khalatnikov formula (Ref.
40). For frequencies larger than 1/ 7, but still much smaller than the
Fermi frequency Ep/fi, n tends to a different constant 7.. The
behavior of 7, vs density is shown in inset (b) in various approxi-
mations at zero temperature. CV is from Ref. 25 and QV is from
Ref. 41. The atomic unit of viscosity is ﬁ/a%: =7x1073 P (ay is
the Bohr radius) and naj=3/4mr?.

effect.?® But, as pointed out in Sec. I, this does not mean that
the issue is settled.

Looking back at Eq. (38) we see that an accurate evalua-
tion of the viscosity correction has two ingredients: (1) the
Kohn-Sham current-density distribution and (2) the viscosity
of the homogeneous electron gas. As for the current density,
it is important to note that all the estimates so far have been
based on an oversimplified model in which the current den-
sity was assumed to be uniform in space.???%?’ In general,
the spatial variation of the current density cannot be ne-
glected especially in nanoscale systems where large trans-
verse variations of the current density are common.?8-3!

Another and more fundamental source of uncertainty is in
the value of the electronic viscosity which enters the dissi-
pative kernel p,.. The viscosity we have used so far, which is
plotted in inset (b) of Fig. 4, was obtained from a zero-
temperature calculation in the limit of zero frequency. In
other words, the temperature (and, with it, the quasiparticle
scattering rate) went to zero before the frequency. When cal-
culated in this manner, the viscosity turns out to be very
small indeed: its value is in the range of 107 /rf P, where
ry=(3/4mnay)"®=1 is the average interelectron distance in
units of the Bohr radius ag. (For comparison, water at room
temperature has a viscosity of about 1072 P).

On the other hand, it is well known from the theory of
homogeneous Fermi liquids* that the behavior of the viscos-
ity is quite different if the zero-frequency limit is approached
at finite temperature. Namely, in this case the viscosity turns
out to be proportional to the mean-free path of the quasipar-

014201-8



INCOMPLETENESS OF THE LANDAUER FORMULA FOR...

ticles, which grows as 1/T% in the low-temperature limit. The
divergence of the zero-frequency viscosity for 7— 0 reflects
the fact that long-lived quasiparticles can transport momen-
tum arbitrarily far away from the source of the stress. This is
also the reason why the viscosity of an ideal classical gas is
independent of density,*? since an increase or a decrease in
the frequency of molecular collisions is exactly compensated
by an opposite variation in the molecular mean-free path.
Panel (a) of Fig. 4 shows the behavior of the zero-
frequency viscosity at room temperature for an electron gas
in three dimension (3D), estimated from Eq. (7.22) of Ref.
40 with due allowance made for the different form of the
interaction potential [the Abrikosov—Khalatnikov (AK) work
was for *He]. Equation (7.22) of Ref. 40 can be rewritten as

8 EF)2
=tin—o/| —= | (kpap)?
s nlSw(kBT (krap)

_ -1
X &?(l —cos 6)? sin’¢ , (44)

COoS—
2 av

which shows explicitly the physical dimensions ofztbe vis-
cosity (in). Here kj is the Fermi wave vector, E F=f;—j: is the
Fermi energy, a is the Bohr radius, and w(6, ¢) is the square
of the matrix element of the electron-electron interaction po-
tential (expressed in units of 4’7762/](12;) between the initial
and final states of a collision process with incoming mo-
menta p;,p, and outgoing momenta p;,p;, where 6 is the
angle between the incoming momenta and ¢ is the angle
between the planes formed by (p;.p,) and (pj.p;). All the
momenta are close to the Fermi surface and the symbol av
denotes the average over # and ¢. The simplest approxima-

tion for w is the Thomas-Fermi approximation, in which we

have
1 2
, 45
2(1 = cos ¢)+4ar3/77) (“3)

W(0,¢)=(

with a=(4/9m)"3=0.521. With this approximation, the av-
erage over 6 can be done analytically and Eq. (44) can be
rewritten as

1 (1.579><105)2
fin~ 8(ar)® T
T L) -1
X f dé Sl; ¢4 .
ar
0 (4 sin® = + —s>

w

(46)

The result of the evaluation of this expression is shown in
inset (a) of Fig. 4 for T=300 K (room temperature). Notice
that the presence of the factor 1/rf causes the viscosity to
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increase sharply with increasing density, in contrast with
what we observe in inset (b) of Fig. 4. It is evident that the
dc viscosity is orders of magnitude larger than the finite fre-
quency viscosity plotted in inset (b) of Fig. 4.

What does this imply for our analysis of the conductance
in nanoscopic and mesoscopic devices? Obviously, these sys-
tems do not host a uniform electron liquid, and in particular
they do not support long-lived quasiparticles that can trans-
port momentum to infinity. This means that the large finite-
temperature results of the uniform electron liquid are almost
certainly not relevant for nanoscale devices: the mean-free
path of quasiparticles is naturally limited by the geometric
size of the device (see Appendix K of Ref. 1 and footnote 17
of Ref. 43). However, the huge difference between the nu-
merical values of the viscosities in the insets of Fig. 4 sug-
gests the possibility of a mesoscopic “middle ground” which
under certain conditions may be much larger than the zero-
temperature viscosity. This, however, is unlikely to be “uni-
versal,” rather it must be related to the specific geometry of
the system. A related difficulty is that, in general, the rate of
dissipation in an interacting electron system depends
strongly on the excitation spectrum of the system. Modeling
dissipation through the viscosity of a homogeneous electron
gas, as implied by our local-density approximation, may lead
to a severely distorted description of the dissipative process.
A truly universal description of dissipation (if possible at all)
is still out of sight.

A central issue emerges from the above discussion,
namely, the need for an accurate, testable, and reliable dissi-
pative functional for time-dependent current-density-
functional theory. The local-density approximation is only a
first step. However, once a better functional is proposed, our
formalism provides a simple and elegant way to test its pre-
dictions for the resistance of nanoscale systems.

Finally, we stress that we have focused our attention to the
linear-response regime. It would be interesting and important
(although not trivial) to extend the results presented in this
paper to the nonlinear case. Obviously, a full-fledged ab ini-
tio calculation of transport using TDCDFT (as done, e.g., in
Refs. 29 and 31) can always be performed. However, ana-
lytical results out of linear response are not available. Such
an extension would allow analysis of the many-body correc-
tions to the current-voltage characteristics—and correspond-
ing dissipation—of nanoscale systems. It is particularly im-
portant for those instances, discussed above, in which the
viscosity in nanostructures turns out to be much larger than
that reported in Ref. 25.
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